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A tube in a square tube bundle of P/D=1�42 was oscillated in the lift direction in air–water
two-phase cross-flow, and fluidelastic forces acting on the oscillated tube were measured. First,
the tube amplitude was fixed to 3mm (=0�136D), and added mass, damping, and stiffness
coefficients were obtained as a function of two-phase mixture characteristics such as
nondimensional gap velocity and void fraction. When reference mixture density and velocity
were estimated, the drift–flux model, in which the relative velocity between the gas and liquid
phases was estimated, generated better results than the homogeneous model. The added mass
coefficient was obtained from quiescent two-phase flow as a function of void fraction. Using
the added mass coefficient, the added stiffness coefficient converged to zero with decreasing
nondimensional gap velocity. This overcame the contradiction in the added stiffness
estimation without added mass, in which the added stiffness coefficient did not converge to
zero with decreasing nondimensional gap velocity. Next, the effects of the vibration amplitude
on the fluidelastic force coefficients were considered. When the tube amplitude was 3mm
(=0�136D) or less, the equivalent added stiffness and damping coefficients were almost
constant and nonlinearity was small. This showed the validity of the fluidelastic force
coefficients obtained based on the data of amplitude of 3mm. The linearity did not exist when
the tube displacement amplitude was 4�5mm (=0�205D) or more; a remarkable nonlinearity
appeared in the equivalent added damping coefficient. A method to estimate the limit-cycle
amplitude of the fluidelastic vibration was proposed when only one tube in the tube bundle
was able to vibrate in the lift direction. The amplitude could be obtained from the amplitude at
which the equivalent added damping coefficient changed from negative to positive with
increase in the tube amplitude. # 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

Fluidelastic vibration of atube bundle in two-phase cross-flow has been observed in
many shell-and-tube heat exchangers, and has been studied by several authors.

Axisa et al. (1984), Nakamura et al. (1986a, b, 1992, 1995), and Pettigrew et al. (1989a)
researched the critical gap velocity. The stability boundary was estimated on the diagram
of mass-damping parameter versus nondimensional gap velocity in the same manner as
Connors’ diagram (Connors 1970) for single-phase flow. Fluidelastic mass and/or
damping were researched by Carlucci (1980), Carlucci & Brown (1983), Hara & Kohgo
(1986), Pettigrew et al. (1989b), and Baj et al. (2002). These studies were reviewed in depth
by Chen (1991), Hara (1993) and Pettigrew & Taylor (1994). However, the fluidelastic
force characteristics were not clarified precisely in two-phase flow, in contrast to those in
single-phase flow (Tanaka & Takahara 1981).
0889-9746/02/070891+17 $35.00/0 # 2002 Published by Elsevier Science Ltd.
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In addition, when the diagram of mass-damping parameter versus nondimensional gap
velocity is used in two-phase flow, the characteristics of fluidelastic vibration are assumed
to be expressed with two-phase mixture characteristics such as mixture density and
mixture velocity, which are mainly obtained with the homogeneous two-phase flow model.
It is necessary to consider whether the characteristics of fluidelastic vibration in two-phase
cross-flow can be expressed with the two-phase mixture characteristics, because the time
constant of the alternate phase change between gas and liquid can be comparable to the
time constant of tube vibration. Furthermore, the homogeneous model can be improved to
a more detailed model by considering the relative velocity between the gas and liquid
phases to understand inherent characteristics in two-phase flow such as two-phase
damping.

With this background, the authors (Inada et al. 1996, 1997) measured the fluidelastic
forces acting on a square tube bundle of P/D=1�42 in air–water two-phase cross-flow
when a tube in the tube bundle was oscillated at a displacement amplitude of 3mm
(=0�136D). However, it was not confirmed whether the linearity of fluidelastic forces
remained up to the amplitude of 3mm.

In this paper, the authors focus on the fluidelastic force acting on a tube that is
oscillated in the lift direction. First, the characteristics of the fluidelastic force coefficients
such as added mass, damping and stiffness coefficients are discussed when the amplitude of
tube oscillation is 3mm. It is shown that the drift–flux model (Zuber & Findlay 1965; Ishii
1977) generates better results than the homogeneous model when nondimensional
coefficients are obtained. Second, the effect of the amplitude on the fluidelastic forces is
examined experimentally. It is shown that the fluidelastic force is assumed to be linear
when the amplitude is small. The factors controlling the amplitude are also considered.

2. EXPERIMENTAL APPARATUS

Figure 1 shows the test-section. Water is pumped through a surge tank, flow meter and
valve, and flows into an air–water mixer. Air, which is compressed by a screw compressor,
flows through a drier, a filter, a valve and a flow meter, and into the air–water mixer. In the
air–water mixer, water flows perpendicularly to a tube bundle and air is discharged from
the holes made in the wall of the tube bundle. The diameter of the holes is 0�5mm. The air–
water mixture made in the mixer flows through a flow rectifier consisting of a lattice with
30mm gaps and 200mm length, and into the tube bundle of the test-section. Here, the
fluidelastic forces are measured.

The test-section has a rectangular tube bundle of 11 rows and 5 columns, with halftubes
installed on either side of the channel wall. The diameter of each tube is 22mm, the pitch is
31�3mm, and the tube length is 198mm. These tubes are made of aluminum alloy. The
center tube in the sixth row can be oscillated with a motor–crank mechanism in the
direction of the x- or y-axis. The angular frequency of the tube vibration is assumed to be
O. The tube oscillated by the motor–crank mechanism is hollow to make the force of
inertia small, but the other tubes are not. Fluidelastic forces can be measured with strain
gauges installed near the base of the tubes, where the diameter is reduced to 10mm. The
fluidelastic force can be measured for four adjacent tubes of the oscillated tube, as well as
for the oscillated tube itself, in the direction of the x- and y-axis. In this paper, only the
fluidelastic force acting on the oscillated tube is obtained when the tube is oscillated in the
x-direction, i.e., the lift direction. The natural frequencies of the tubes are larger than
150Hz, and the fluidelastic force can be measured when the oscillation frequency is
525Hz.
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Figure 1. Test-section of the experimental apparatus.
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3. RESULTS OF FLUIDELASTIC FORCE COEFFICIENTS

3.1. Experimental Conditions

The frequency of the tube vibration is changed from 5 to 25Hz, water velocity at the gap
from 0 to 6m/s and air velocity at the gap from 0 to 7�5m/s. In this case, the void fraction
is lower than 0�8. The amplitude of the tube is fixed at 3mm (=0�136D).

3.2. Data Reduction

Each fluidelastic coefficient, such as added mass, damping and stiffness coefficient, is
obtained when tube displacement amplitude, fluidelastic force amplitude, and phase
difference between the tube displacement and fluid force are measured. The tube
displacement is obtained using an acceleration pick-up of a strain-gauge type. The tube
displacement and fluid force amplitudes, x0–p and Fxox,0–p, are obtained when the root-
mean-square value is calculated from integration of the power spectral density and the
wave shape of both the tube displacement and fluid force are assumed to be sinusoidal.
The data are collected for 64 s. The power spectral densities of tube displacement and
fluidelastic force, an example of which is shown in Figure 2, had a sharp peak at the
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Figure 2. Example of the power spectral density of the fluidelastic force, for a ¼ 0�4, x02p ¼ 3mm,
jL ¼ 1�67m/s, VR ¼ 1�64.
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excitation frequency. Regarding the fluidelastic force, the power spectral density includes
random flow excitation force components, and integration is conducted in the region of
excitation frequency � 0�5Hz. Of course, random flow excitation force is included in this
frequency region. The ratio of random flow excitation force amplitude to fluidelastic force
amplitude was 55% when the excitation frequency was 20Hz, gas velocity was about
1m/s, and liquid velocity was about 2m/s. The mass of the test cylinder can also generate
the force proportional to the tube acceleration. So, the mass of the test cylinder was
obtained when the center tube was oscillated at several frequencies in air. The result was
0�22 kg/m. The inertia force due to the test cylinder was subtracted from the total force.
The added mass in single-phase water is around 0�8 kg/m, which is four times larger than
the mass of the test cylinder. Even if the decrease of the added mass in two-phase flow is
taken into account, the error generated by the uncertainty of the mass of the test cylinder
can be small.

The phase delay of the fluidelastic force from tube displacement, f, is obtained from the
argument of cross-spectral density at the excitation frequency.

Added mass, damping, and stiffness coefficients are obtained as follows:

Kaxox �MaxoxO2 ¼ ðFxox;02p=x02pÞ cos f; OCaxox ¼ �ðFxox;02p=x02pÞ sin f: ð1Þ

3.3. Experimental Results

3.3.1. Definition of two-phase flow parameters

In the drift–flux model, the gas velocity uG is expressed as:

uG ¼ C0jT þ VGj ; ð2Þ

where volumetric flux densities of gas, liquid and mixture are defined by

jG ¼ auG; jL ¼ ð1 � aÞuL; jT ¼ jG þ jL ð3Þ

with C0 being the distribution parameter and VGj the drift velocity. The parameters C0 and
VGj depend on the flow pattern, and generally can be calculated from the experimental
data of gas velocity as a function of volumetric flux density of the mixture. In the case of
flow in a circular pipe, when the void fraction is between 0�5 and 0�8 in a 25�4mm diameter
tube, the flow regime is called churn turbulent flow. This regime is between slug flow and



FLUIDELASTIC FORCES IN TWO-PHASE FLOW 895
annular flow. C0 and VGj are obtained experimentally as follows (Ishii 1977):

C0 ¼ 1�2 � 0�2
ffiffiffiffiffiffi
rG
rL

r
; VGj ¼

ffiffiffi
2

p sgðrL � rGÞ
r2
L

� �0�25

: ð4Þ

In the case of the tube bundle, there are no data available. The flow through the tube
bundle may be close to churn turbulent because the flow is stirred up by the tube bundle.
Hence, equation (4) is used for a first-step estimation. However, the flow inside a tube
bundle can be significantly different from the flow inside a circular pipe, and when
vibration of tube bundles is discussed using the drift–flux model, the flow regime in the
tube bundle should be considered in the future.

Using jG and jL, mass flux is expressed as

G ¼ rGjG þ rLjL: ð5Þ

In the homogeneous model, the homogeneous void fraction, mixture density and
mixture gap velocity are defined by

b ¼ jG=jT ; rH ¼ rGbþ rLð1 � bÞ; UgH ¼ G=rH : ð6Þ

In the drift–flux model, the mixture density and mixture gap velocity are defined by

r ¼ rGaþ rLð1 � aÞ; Ug ¼ G=r: ð7Þ

3.3.2. Definition of nondimensional parameters

The nondimensional gap velocity in the drift–flux model and homogeneous model is
defined by

VR ¼
Ug

OD
; VRH ¼

UgH

OD
; ð8Þ

and the nondimensional added mass, damping and stiffness coefficients in the drift–flux
model and homogeneous model are defined by

uMaxox ¼
Maxox

rD2=2
; uCaxox ¼

Caxox

rD2O=2
; uKaxox ¼

Kaxox

rD2O2=2
;

uMaHxox ¼
Maxox

rHD2=2
; uCaHxox ¼

Caxox

rHD2O=2
; uKaHxox ¼

Kaxox

rHD2O2=2
: ð9Þ

3.3.3. Homogeneous model and drift–flux model

We first discuss whether or not better results can be derived from the drift–flux model than
the homogeneous model. The added stiffness coefficient is shown in nondimensional form
in Figures 3 and 4. Figure 3 shows the results estimated with the drift–flux model, and
Figure 4 shows the results estimated with the homogeneous model. The comparison
between the two models was done with almost the same data points. If the flow conditions
are the same, VRH becomes larger than VR, so the range of the horizontal axis of Figure 4
is larger than that of Figure 3. In Figure 3, the solid line shows a trend line obtained by
using regression analysis. In previous reports (Inada et al. 1996, 1997), the added stiffness
coefficient was shown for a wide range of nondimensional gap velocity up to 100. We do
not need to estimate the coefficient for such a wide range in engineering, as the accuracy of
fit is not good when fitting data in a curve over such a wide range. In this report, the range
of nondimensional gap velocity is limited to 3 or less. When the flow is estimated with the
homogeneous model, the scatter of data is large. However, when the flow is estimated with
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the drift–flux model, the data collapse very well, which shows that the drift–flux model
generates better results than the homogeneous model.

3.3.4. Added stiffness and added mass coefficient

In Figure 3, even if the nondimensional gap velocity approaches zero, the added stiffness
coefficient does not converge to zero, which is incorrect from the standpoint of physics.
Next, the gap from zero in the low nondimensional gap velocity region will be reduced by
introducing the added mass coefficient. When the added mass coefficient is obtained
experimentally, the phase difference of fluid force due to added mass and that due to added
stiffness is 1808, as shown by equation (1). We should consider how to separate them.

In this report, when liquid velocity is zero and only gas flows, i.e., for a quiescent two-
phase flow, the added stiffness is assumed to be zero and the entire component
proportional to the acceleration of the tube is assumed to be the added mass, because the
density of the gas is much lower than that of the liquid. This means that the contribution
of gas flow to the fluid force is very small. The absence of liquid in the gas phase is
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important in the case of gas–liquid two-phase flow, which induces only an added mass
component.

The nondimensional added mass coefficient is shown in Figure 5. The data for various
frequency conditions are plotted. The nondimensional added mass coefficient is
independent of tube vibration frequency under this experimental condition. The
nondimensional added mass coefficient increases with increasing void fraction when the
void fraction is lower than 0�75; conversely, it decreases with increasing void fraction when
the void fraction is higher than 0�75.

Incidentally, the added mass coefficient is nondimensionalized by 1
2
rD2, where r is the

mixture density. If we consider completely mixed two-phase flow, and it can be treated as
if it were single-phase flow, then it is suggested that the nondimensional added mass
becomes constant, and is independent of void fraction. However, Figure 5 shows that the
nondimensional added mass coefficient depends on the void fraction, which suggests that
the relative motion between the liquid and gas phases may affect the fluid dynamic force.
Further study on this matter is required.

When the void fraction is zero, the result is consistent with that of previous research
(Pettigrew & Taylor 1994) on single-phase flow.

Figure 6 shows the nondimensional added stiffness coefficient when the component of
added mass is excluded. In Figure 6, the solid line shows a trend line obtained by using
regression analysis. The added stiffness coefficient converges to zero when the
nondimensional gap velocity approaches zero. The nondimensional added stiffness
coefficient is positive, and increases with increasing nondimensional gap velocity.

3.3.5. Added damping coefficient and two-phase damping

Figure 7 shows the nondimensional added damping coefficient estimated with the drift–
flux model where the solid line shows a trend line obtained by using regression analysis.
The nondimensional added damping coefficient depends on void fraction a. In the case of
a ¼ 0, the coefficient is negative, and the absolute value decreases monotonously from 0
with increasing nondimensional gap velocity, VR. On the other hand, in the case of a > 0�4,
the coefficient is positive and increases slightly with increasing VR when VR is small. When
VR becomes large, the nondimensional added damping coefficient decreases with
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increasing VR, and becomes negative; the nondimensional gap velocity at which this occurs
increases with increasing void fraction. The data collapse very well in each void fraction
region. The results show the same trend as those of Baj et al. (2002), at least qualitatively.

Figure 8 shows the results estimated with the homogeneous model, where the solid line
shows a trend line obtained by using regression analysis. The scatter of data is relatively
large.

In Figure 7, the added damping coefficient becomes positive in the low nondimensional
gap velocity region when a > 0�4, which means the existence of damping induced by two-
phase flow.

Two-phase damping was first defined by Pettigrew & Taylor (1994), using the
homogeneous model. In his theory, the total fluid damping ratio, zTF in two-phase
mixtures was divided into two-phase damping, zTP, a viscous damping, zv, and a



-3

-2

-1

0

1

2

Nondimensional gap velocity, VRH

C
aH

xo
x

0 1 2 3

Figure 8. Nondimensional added damping coefficient estimated with the homogeneous model: 0�75b50�8.

FLUIDELASTIC FORCES IN TWO-PHASE FLOW 899
flow-dependent damping, zFD, as follows:

zTF ¼ zTP þ zV þ zFD: ð10Þ

In Pettigrew’s (1994) work, two-phase damping was defined as the damping when the flow
velocity is half the critical velocity of fluidelastic vibration. Figure 7 shows the existence of
two-phase damping from an engineering perspective; however, a more reasonable
explanation of added damping in two-phase flow should be considered.

4. DEPENDENCY OF FLUIDELASTIC FORCES ON VIBRATION AMPLITUDE

4.1. Experimental Conditions

The frequency of the tube vibration is fixed to 15Hz. The water gap velocity is varied from
0 to 3m/s and the air gap velocity from 0 to 3m/s. In this case, the void fraction ranges
from 0 to 70%. The amplitude of the tube is changed from 1�5mm (=0�068D) to 7mm
(=0�318D).

4.2. Experimental Results of Fluidelastic Forces

The fluidelastic forces are measured in the same manner as in Section 3.
Figure 9 shows an example of the relation between excitation amplitude of the tube,

x0–p, and the amplitude of the excitation frequency component of the fluidelastic force,
Fxox,0–p. Volumetric flux of liquid, jL, which is the flow velocity when assuming that only
liquid flows in the entire cross-section, is 1�67m/s. The void fraction a is changed as a
parameter. Fxox,0–p is nearly proportional to the amplitude at least when the amplitude is
4�5mm (=0�205D) or less. Even if the amplitude is increased up to about 7mm
(=0�318D), the degradation of the linear relation is small. The relation between x0–p and
Fxox,0–p shows almost the same tendency when jL53�2m/s.
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The phase difference between the tube vibration and the fluidelastic force is shown
in Figure 10 as a function of the amplitude of the tube. In Figure 10(a–c), jL is 0, 0�4,
and 0�81m/s, respectively. The phase difference is negative at almost all amplitudes
and is independent of the amplitude for x0–p56mm (=0�273D). When the phase
difference is positive, the absolute value is small. In Figure 10(d), jL ¼ 1�19m/s. The
phase difference is almost constant when the amplitude is 54�5mm (=0�205D). When
the amplitude is larger than 4�5mm, the trend may be are divided into two groups: one in
which the void fraction is 50�3 where the phase difference increases from negative to
positive values, and the other in which the void fraction is more than 0�4 where the phase
difference becomes negative and the absolute value increases.

In Figure 10(e), jL is raised to 1�67m/s. The phase difference becomes positive and does
not depend on the amplitude so much when the amplitude is smaller than 3mm
(=0�136D). The phase difference becomes positive and increases with increase in the
amplitude above 4�5mm (=0�205D) when the void fraction is 50�3. When void fraction is
larger than 0�4 and the amplitude is above 4�5mm, the phase difference changes from
positive to negative. It is found that the dependency of the phase difference on the
amplitude becomes large under any void fraction conditions.

Figure 10(f) shows the case where jL is raised to 3�2m/s. The phase difference is
positive and does not depend on the amplitude when the amplitude is smaller than
3mm (=0�136D). When the amplitude is larger than 4�5mm (=0�205D), the
phase difference increases when the void fraction is 50�3, and decreases when the void
fraction is larger than 0�4. The rate of decrease becomes larger with increasing void
fraction.

Figure 10 shows that fluidelastic force is linear in engineering for the amplitude of
3mm (=0�136D) or less in the range of the experimental flow rate conditions. This
shows the validity of the fluidelastic coefficients in Section 3, in which the coefficients
were obtained based on the data of amplitude of 3mm.The principle of super-
position is applicable for the amplitude of 3mm or less. Therefore, the coefficients
can be used to estimate stability around the equilibrium position for infinitesimally
small perturbations. Linearity does not exist when the tube displacement amplitude
is 4�5mm (=0�205D) or more; a remarkable nonlinearity appears in the phase
difference.
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Figure 10. Phase difference between the tube vibration and the fluidelastic force: *, a ¼ 0; &, a ¼ 0�1; n,
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4.3. Equivalent Fluidelastic Force Coefficients

Though the amplitude of the fluidelastic force, Fxox,0–p, and the phase difference of the
fluidelastic force to the tube vibration, f, are shown in Figures 9 and 10, the physical
meaning is not yet clear. So, let us obtain equivalent added stiffness coefficient, Kaeq, and
equivalent added damping coefficient, Caeq, from fluidelastic force using equation (1) as
shown in Figures 11 and 12, where Kaeq and Caeq are defined and nondimensionalized as
follows:

Kaeq ¼ ðFxox;02p=x02pÞ cos f; OCaeq ¼ �ðFxox;02p=x02pÞ sin f; ð11Þ

#CCaeq ¼
Caeq

rD2O=2
; #KKaeq ¼

Kaeq

rD2O2=2
: ð12Þ

The variable r is the mixture density, and is obtained based on the drift-flux model. In
equations (11) and (12), Kaeq includes the added mass component.
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If both equivalent coefficients depend on the tube amplitude, added damping and
stiffness coefficients are nonlinear. If both equivalent coefficients are independent of the
tube amplitude at small amplitudes, added damping and stiffness coefficients are assumed
to be linear. Now, let us consider the case in which only one tube in the tube bundle
can vibrate and only in the lift direction. If we consider the case of small amplitude
where fluidelastic force is linear, the added stiffness coefficient cannot be related to
the mechanism of fluidelastic vibration, whereas the added damping coefficient can be
related to the generation of fluidelastic vibration. The natural frequency increases for
the positive added stiffness coefficient, and decreases for the negative added stiff-
ness coefficient. Fluidelastic vibration can be generated, and the amplitude increases
exponentially when the total damping coefficient of the structure and fluidelastic force
is negative.

Figure 11 shows a nondimensional equivalent added stiffness coefficient, uKaeq, for the
case of jL ¼ 1�19m/s as an example. It does not depend on the amplitude and is constant
up to x0–p=4�5mm (=0�205D), in which uKaeq is linear.

The nondimensional equivalent added damping coefficient, uCaeq, is shown in Figure 12.
In Figure 12(a), jL ¼ 0. The value of uCaeq can be negative in the small void fraction region.
In this case, gas velocity is not so large, and negative added damping cannot be generated.
The absolute value of negative damping is small, and may be due to experimental error.
The value of uCaeq is assumed to be near zero in this region. When the void fraction is 0�2 or
more, uCaeq is positive and almost linear. In Figure 12(b) and (c), jL is 0�4 and 0�81m/s,
respectively. The value of uCaeq is positive and independent of the amplitude, and
fluidelastic vibration cannot occur.

In Figure 12(d), jL ¼ 1�19m/s. The value of uCaeq is positive and almost constant when
the void fraction is 54�5mm (=0�205D). When the amplitude is larger than 4�5mm, the
trend is of two types: one in which the void fraction is 50�3 where uCaeq decreases from a
positive value to a very small value; the other in which the void fraction is more than 0�4,
where uCaeq is positive and the absolute value increases.

In Figure 12(e), jL is raised to 1�67m/s. The value of uCaeq becomes negative and does not
depend on the amplitude so much when the amplitude is smaller than 3mm (=0�136D).
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The value of uCaeq becomes negative and the absolute value increases with increasing the
amplitude above 4�5mm (=0�205D) when the void fraction is 0�3 or less. When the void
fraction is larger than 0�4 and the amplitude is above 4�5mm, the value of uCaeq changes
from negative to positive. It is found that the dependency of uCaeq on the amplitude
becomes large under any void fraction conditions.

Figure 12(f) shows the case where jL is raised to 3�2m/s. The value of uCaeq is negative
and does not depend on the amplitude when the amplitude is smaller than 3mm
(=0�136D). When the amplitude is larger than 4�5mm (=0�205D), uCaeq becomes negative
and its absolute value (i) increases when the void fraction is 50�3, and (ii) it decreases
when the void fraction is larger than 0�4. The rate of decrease becomes larger with
increasing void fraction.

Figure 12 also shows that the fluidelastic force is linear for engineering purposes,
for an amplitude of 3mm (=0�136D) or less in the range of the experimental flow rate
conditions. The linearity does not exist when the tube displacement amplitude x0–p is
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4�5mm (=0�205D) or more; a remarkable nonlinearity appears in the equivalent added
damping coefficient.

4.4. Preliminary Amplitude Evaluation

The fluidelastic forces are nonlinear at large amplitudes, and the principle of superposition
is not applicable. If it is considered that a single flexible tube can oscillate in a single
direction in a rigid tube bundle, then the amplitude of the tube can be obtained from the
fluidelastic force, because the force was obtained for a single oscillated tube in a rigid tube
bundle. However, if all tubes are considered flexible, then the amplitude of the tube cannot
be obtained.

Now, let us consider the case in which a tube in a tube bundle is able to vibrate only in
the lift direction again. When the damping coefficient is negative, at infinitesimally small
amplitude, fluidelastic vibration occurs. When the nondimensional equivalent damping
coefficient, uCaeq, obtained from equation (11) changes from negative to positive with
increasing the amplitude, the limit-cycle amplitude of the fluidelastic vibration is the point
at which uCaeq becomes zero. This principle is used in this section.

Figure 13 shows an example of the limit-cycle amplitude of fluidelastic vibration as a
function of the void fraction when jL ¼ 1�67m/s. Since uCaeq is always negative in the case
of a50�3, the amplitude is assumed to grow until the tube collides with adjacent tubes.
When the void fraction is 0�4 or more, the amplitude becomes small at about 4–5mm
(=0�18D–0�23D).

When jL is 3�2m/s, uCaeq is always negative for an amplitude of 7mm (=0�318D) or less
and the void fraction of 0�7 or less as shown in Figure 12(f). When the flow velocity is
large, the vibration grows until the tube collides the adjacent tubes.

The evaluation method presented in this paper is applicable when the correlation
length of the void fraction fluctuation in the axial direction is much shorter than 200mm,
which is the measurement length of fluidelastic force, and also much smaller than the
length of the evaluated pipeline. However, data concerning the correlation length of void
fraction fluctuations were not found in previous studies, and need to be gathered
experimentally in the future. Experimental verifications of the amplitude evaluation are
also necessary.
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5. CONCLUSIONS

The fluidelastic forces acting on a square tube bundle in air–water two-phase cross-flow
were measured when a tube in the tube bundle was oscillated in the lift direction. The
results may be summarized as follows:

(i) Added mass, damping and stiffness coefficients were obtained as a function of two-
phase mixture characteristics such as nondimensional gap velocity and void fraction. The
drift–flux model, in which the relative velocity between the gas and liquid phases was
estimated, generated better results than the homogeneous model. Drift–flux parameters in
the tube bundle should be considered in future studies.

(ii) The added mass coefficient was obtained from quiescent two-phase flow as a
function of void fraction. Using the added mass coefficient, the added stiffness coefficient
converged to zero with decreasing nondimensional gap velocity. This overcame the
contradiction in the added stiffness estimation without added mass, in which the added
stiffness coefficient did not converge to zero with decreasing nondimensional gap velocity.

(iii) It was found that the equivalent added stiffness and damping coefficients did not
depend on the tube amplitude significantly and nonlinearity was small in the excitation
experiment of 15Hz when the tube amplitude was 3mm (=0�136D) or less. This suggested
the validity of the fluidelastic force coefficients obtained based on the data of amplitude of
3mm.

(iv) Linearity did not exist when the tube displacement amplitude was 4�5mm
(=0�205D) or more; remarkable nonlinearity appeared in the equivalent added damping
coefficient. A method to estimate the limit-cycle amplitude of the fluidelastic vibration was
proposed when only one tube in the tube bundle was able to vibrate in the lift direction.
The amplitude could be obtained from the amplitude at which the equivalent added
damping coefficient changed from negative to positive with increasing tube amplitude.
Experimental verification is necessary in future studies.
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APPENDIX NOMENCLATURE

C0 distribution parameter of the drift–flux model
Caxox added damping coefficient
Caeq equivalent added damping coefficient
D tube diameter
Fxox;02p amplitude from zero to peak of fluidelastic force for the forced oscillation

frequency component
g gravity acceleration
G mass flux of the flow at the gap
jG; jL; jT volumetric flux densities of gas, liquid and mixture
Kaxox added stiffness coefficient
Kaeq equivalent added stiffness coefficient including added mass component
Maxox added mass coefficient
P pitch of the tube bundle
X02p tube displacement amplitude from zero to peak
uG; uL gas and liquid velocities
Ug;UgH mixture gap velocities in drift–flux model and homogeneous model
VGj drift velocity of the drift–flux model
VR;VRH nondimensional gap velocity in drift–flux model and homogeneous model
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a gas-phase void fraction
b homogeneous void fraction
rG; rL densities of gas and liquid phases
r;rH mixture densities in drift–flux model and homogeneous model
s surface tension constant
f phase difference between the tube vibration and fluidelastic force
O frequency of tube oscillation
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